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Summary

Several stress-related mental disorders are characterised by disturbed sleep, but objec-

tive sleep biomarkers are not routinely examined in psychiatric patients. We examined

the use of wearable-based sleep biomarkers in a psychiatric sample with headband

electroencephalography (EEG) including pulse photoplethysmography (PPG), with an

additional focus on microstructural elements as especially the shift from low to high

frequencies appears relevant for several stress-related mental disorders. We analysed

371 nights of sufficient quality from 83 healthy participants and those with a con-

firmed stress-related mental disorder (anxiety-affective spectrum). The median value

of macrostructural, microstructural (spectral slope fitting), and heart rate variables was

calculated across nights and analysed at the individual level (N = 83). The headbands

were accepted well by patients and the data quality was sufficient for most nights.

The macrostructural analyses revealed trends for significance regarding sleep continu-

ity but not sleep depth variables. The spectral analyses yielded no between-group dif-

ferences except for a group � age interaction, with the normal age-related decline in

the low versus high frequency power ratio flattening in the patient group. The PPG

analyses showed that the mean heart rate was higher in the patient group in pre-sleep

epochs, a difference that reduced during sleep and dissipated at wakefulness. Wear-

able devices that record EEG and/or PPG could be used over multiple nights to assess

sleep fragmentation, spectral balance, and sympathetic drive throughout the sleep–

wake cycle in patients with stress-related mental disorders and healthy controls,

although macrostructural and spectral markers did not differ between the two groups.
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1 | INTRODUCTION

Several stress-related mental disorders are characterised by disturbed

sleep. Major depressive disorder has insomnia as one of the core

symptoms in its diagnosis (American Psychiatric Association, 2013),

with polysomnographic studies revealing reduced sleep continuity,

sleep depth, and alterations in rapid eye movement (REM) sleep

characteristics such as duration, latency, and the density of eye move-

ments (Baglioni et al., 2016). Moreover, several studies have noted

subjective and objective sleep difficulties in anxiety disorders

(Baglioni et al., 2016; Ohayon & Roth, 2003), whereas post-traumatic

stress disorder (PTSD) has subjectively reported insomnia and night-

mares in its diagnosis (American Psychiatric Association, 2013), with

similar objective alterations in sleep continuity and depth and REM

sleep characteristics dependent on age groups (Zhang et al., 2019)

and other confounds (Kobayashi et al., 2007). Additionally, at the

microstructural level, the reduction of power in the lower (delta)

frequencies (de Boer et al., 2020; Wang et al., 2020) and, potentially,

a shift from low to high spectral frequencies (also referred to as corti-

cal hyperarousal) (Blaskovich et al., 2020) appear relevant for several

stress-related mental disorders.

Disrupted sleep therefore appears to express partial dysfunction

in deep-brain circuitry associated with both sleep and emotion regula-

tion. This includes, but is not limited to, limbic and paralimbic circuitry,

the hypothalamus, and multiple arousal-related brainstem regions

(Ben Simon et al., 2020; Van Someren, 2021). Moreover, several sleep

disorders such as sleep disordered breathing and restless legs/periodic

limb movement disorder are more prevalent in psychiatric samples

than in the general population, indicative of these sleep disorders

being a risk factor to develop mental disorders (or increased symp-

tomatology) after exposure to chronic stressors or traumatic events

(Spoormaker & Montgomery, 2008).

This is of importance for biomarker search in psychiatry because

no biomarkers with clinical utility have yet been identified for stress-

related mental disorders, whereas sleep can provide a multitude of

potentially relevant macro- and microstructural biomarkers of interest,

including cortical hyperarousal. However, due to the limited availabil-

ity of sleep laboratories in psychiatric clinics (or practices), sleep is not

routinely assessed in psychiatric patients, except in a subjective man-

ner by questionnaires or clinical interviews. Instead of objective sleep

quality, several sleep disorders are diagnosed exclusively based on

subjective sleep quality, such as insomnia and nightmares (American

Psychiatric Association, 2013).

Furthermore, these objective measurements in laboratory/

hospital settings are scarce and usually limited to one or two assess-

ment nights. They provide high resolution and unequivocally objective

data (the gold standard) about sleep in a highly controlled environ-

ment. However, the ecological validity of such laboratory settings is

questionable and may not veridically capture the sleep complaints that

participants experience in their home environment. In fact, sleep com-

plaints such as nightmares in people with PTSD are rarely observed in

the laboratory (Richards et al., 2022) or even when measured with

classic polysomnography in their clinic beds (Spoormaker et al., 2006),

which is in sharp contrast with self-reports. Studies employing

multiple nights in the home environment have been more successful

in, for example, capturing nightmares (Paul et al., 2019; Richards

et al., 2022), indicating that more recording nights are needed to

adapt to measurement bias and to capture natural sleep profiles. This

may be why macrostructural elements generally do not show such

impressive effect sizes in between-group comparisons of psychiatric

patients with healthy participants.

The availability of wrist wearables that incorporate heart rate and

headband electroencephalography (EEG) in the home environment

(Penzel et al., 2018) now opens up the possibility to measure such

sleep biomarkers in clinical samples (Fonseca et al., 2020; Rösler

et al., 2022), with wristwatch wearables showing decent accuracy in

sleep versus wake classifications in clinical samples (Wulterkens

et al., 2021), without the same problems as actigraphy alone (low

specificity for sleep Marino et al., 2013) and promising sleep staging in

healthy participants (Grandner et al., 2023). Even though these

devices in comparison with PSG provide noisier data due to

uncontrolled environmental variables, different electrode types, lower

sampling rate, and an all in all reduced quality of data, they are capable

of collecting a high amount of (ecologically valid) data, which could

make up for the reduction in data quality. Furthermore, headband

EEG provides hypnogram data with considerable overlap with stan-

dard polysomnography, except for some over- or underestimations of

wakefulness dependent on the device and algorithm (Wood

et al., 2023).

We examined the use of wearable sleep biomarkers in a psychiat-

ric sample with headband EEG including PPG, with an additional focus

on microstructural elements such as cortical hyperarousal. Our

hypotheses were that, in line with previous research, we would

observe some macrostructural differences between healthy controls

and psychiatric patients of moderate size (reduced sleep continuity

and depth). With more temporally fine-grained analyses relating to

spectral power and heart rate (variability), we anticipated further

unhealthy sleep characteristics to manifest in a reduced proportion of

low versus high frequency power in the EEG in non-rapid eye move-

ment (NREM) sleep, as well as increased heart rate and reduced heart

rate variability throughout sleep in individuals with a confirmed

stress-related mental disorder.

2 | MATERIALS AND METHODS

2.1 | Participants

Participants were part of a larger transdiagnostic study currently

running at the Max Planck Institute of Psychiatry called the Biological

Classification of Mental Disorders (BeCOME) study (registered on

ClinicalTrials.gov: NCT03984084). Unmedicated outpatients with

stress-related mental disorders (primarily affective and anxiety disor-

ders) and healthy controls between the ages of 18 and 65 years are

recruited at the intake procedure at the clinic. The aim of the

BeCOME study is to help identify biologically informed and
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objectively measurable subtypes underlying stress-related mental

disorders. Clinical diagnoses of disorders are verified with the

Munich-composite international diagnostic interview (DIAX/M-CIDI)

(Wittchen et al., 1998). The M-CIDI is a face-to-face conducted,

computer-based interview assessing symptoms and diagnoses based

on the DSM-IV and ICD-10 criteria of various mental disorders, in our

study including anxiety disorder, PTSD, depression and dysthymia,

alcohol use, nicotine use, and illegal substance use. Participants with

signs of risky alcohol and other substance use were excluded from the

study. Besides the M-CIDI interview participants also undergo a multi-

modal, in-depth psychophysiological, neuropsychological, imaging,

and omics assessment (from blood samples) during the two experi-

mental days they spend at the Max Planck Institute. As a rather new

addition to the study protocol (since 2020), participants are asked to

take an EEG headband home at the first appointment and to wear it

for a minimum of two nights (or as much as they feel comfortable

with) before returning for the 2 days of extensive testing. The number

of days between the first appointment and the first testing day varied

between 2 and 18.

To date, 483 nights have been collected, with the number of

nights per participant varying between 1 and 17 with a mean of 4.5

nights (SD = 2.7). Around 85% of participants slept 2–9 consecutive

nights with the headband. In all of the following analyses, only nights

with a minimum record quality of 70% (percentage of the night

recording that can be scored according to the automated Dreem

2 analysis software) were included, which resulted in 372 nights

(Figure 1).

One participant had to be excluded because of missing data

(no age information). Finally, 371 nights from 83 participants were

included in our analyses (see Table 1 for distributions) with an average

age of 33.5 years (Mpatient = 33.9, SDpatient = 14.7, Mcontrol = 33.1,

SDcontrol = 13.7). All included participants were non-smokers with a low

weekly alcohol intake (Mpatient = 1.1, SDpatient = 1.4, Mcontrol = 1.7,

SDcontrol = 1.8) and with an average body mass index below

25 (Mpatient = 24.6, SDpatient = 5.2, Mcontrol = 23.4, SDcontrol = 3.8). Fur-

thermore, patients showed mild to moderate depressive symptoms

according to the Beck's Depression Inventory (Beck et al., 1961)

(Mpatient = 14.8, SDpatient = 11.1,Mcontrol = 1.5, SDcontrol = 2.1) and clinical

levels of anxiety according to the Spielberger's State–Trait Anxiety Inven-

tory (Spielberger et al., 1970) scores (Mpatient = 43.3, SDpatient = 9.9,

Mcontrol = 30.9, SDcontrol = 4.9).

All participants provided a written informed consent and had

been reimbursed for their participation. The study protocol was in line

with the Declaration of Helsinki (World Medical Association, 2001)

and was approved by the local ethics committee (reference number:

350-14).

2.2 | Data acquisition

Sleep data were collected with the Dreem 2 headband (Dreem, Paris,

France), a wireless EEG headband with six conductive high-

consistency silicone rubber (dry) EEG sensors at locations Fp1, Fp2

(ground), F7, F8, O1, O2 with sampling frequency of 250 Hz. These

sensors are referenced to each other resulting in the following seven

channels: F7-O1, F8-O2, Fp1-F8, F8-F7, Fp1-O1, Fp1-O2, Fp1-F7.

Each headband has a three-dimensional axis linear accelerometer

measuring movement, position, and breathing frequency and a pulse

sensor in LED reflective solution measuring heart rate (both with a

sampling rate of 50 Hz). The headbands were handed out on the first

day of the study. After a short introduction to the wearable device,

nightly recordings were started and finished by the participants

(by pushing the start/stop button on the headband). The headbands

were returned to the laboratory on the second day of the 2 day test-

ing period, and data were uploaded to the server via Wi-Fi.

2.3 | Sleep macrostructure and spectral analysis

2.3.1 | Sleep staging

Sleep stages and conventional macrostructural parameters were

scored and calculated by Dreem's own automatic algorithm developed

F IGURE 1 Dreem record quality of all recorded nights (in a
consecutive manner) for each participant. Record quality index shows
what percentage of the night is still scorable on at least one channel
during one recording. On this heatmap, green represents a high
record quality and red a low record quality. The first quality assurance
step was based on these record quality measurements.

TABLE 1 Distribution of the included number of participants and
nights after exclusion and quality check.

Participant (#) Night (#)

Female Male Sum Female Male Sum

Patient 33 14 47 134 77 211

Control 26 10 36 107 53 160

Sum 59 24 83 241 130 371

Note: Bold indicates all participant number and all number of nights analized.

BLASKOVICH ET AL. 3 of 11
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for Dreem 2 devices (Arnal et al., 2020). To verify the validity of this

algorithm, half of our recordings were manually examined and, where

necessary, rescored by two trained scorers. Sensitivity, specificity, and

accuracy were calculated for each traditional stage separately (see

Table S1), resulting in an overall accuracy (correctly rated epochs/all

epochs) of 92%. While Dreem 2's algorithm detected slow-wave sleep

(SWS), NREM stage 2, and REM states with a very high sensitivity

(0.98–0.93) and specificity (0.99–0.95), the sensitivity of wake was

somewhat lower (0.77) due to the fact that in our sample the algo-

rithm identified many bigger, muscle-related arousals as short wake

periods, thus overestimating wake. For our purposes this sufficed, as

in this study we aimed to examine relative differences between the

groups and not necessarily to provide an epidemiological estimate of

the absolute amounts of wakefulness in the home environment. The

traditional macrostructure, sleep-related variables per night were cal-

culated for each night and summarised for each participant by taking

the median value over all recorded nights. NREM stage 1 was left out

from the calculation because only 0.6% of the scored epochs

belonged to this category based on Dreem's automatic scoring.

2.3.2 | Preprocessing and artefact removal

For spectral analyses, the raw data were first bandpass filtered

between 1 and 40 Hz with a fourth order for the high-pass and a

tenth order for the low-pass filter. The data were additionally filtered

with a notch filter (tenth order with 48–52 Hz cut-off, to suppress line

noise, which was so strong in a few nights that even bandpass filtering

could not completely remove it). After filtering, artefact correction

was performed by in-house MATLAB (version R2021b, MathWorks

Inc., Natick, MA) scripts. This comprised an automated algorithm to

identify two of the most common artefact categories characteristic of

Dreem 2 recordings (for details, see Figure S1). The first category can

be described as large amplitude artefacts, most likely the result of

movement, electrode displacement, reduction in impedance, or device

disconnection. To identify these artefacts, a sleep phase specific, flexi-

ble threshold was computed for each recording as a certain quantile

of the distribution of all amplitudes in the given sleep phase. The

quantile was chosen according to the characteristics of each phase.

For NREM stage 2, the 99.5th quantile was chosen, the highest

among all sleep phases, to avoid the detection of sleep spindles. Con-

versely, the quantile was lowered to the 95th for the wake phase, as

the proportion of artifactual signal was believed to be much higher in

this phase. Lastly, for slow-wave sleep (SWS) and REM, the 99th

quantile was sufficient. Note that we did not analyse REM sleep as

eye movement detection algorithms would first have to be developed.

The filtered signal was divided into 4 s epochs with a 50% overlap,

and every epoch that surpassed the given threshold at any of its time

points was marked as an artefact. The second category comprised

cardiac artefacts. Due to the position and nature of the dry sensors on

the headband, the electrodes on the frontal band often shifted onto

one of the vessels on the forehead and the signal became tainted with

periodically appearing artifactual waves. Since pulse artefacts are

time-locked to the heartbeat of the participant, information obtained

from the PPG sensor was used to better identify these artefacts. First,

PPG peaks were detected and mean RR intervals were calculated for

each 12 s 50% overlapping window of the PPG signal. Second, cross

correlations (i.e., the correlation of the signal with itself) were calcu-

lated in the same epoch basis on the EEG channels for different tem-

poral phase delays. Even though cross correlations always show the

maximum peak for lag time 0, in the case of cardiac artefacts, further

periodical peaks from the alignment of the pulses in the EEG may

appear. An epoch was marked as an artefact when the second largest

peak in the cross correlation was located within a lag of ±100 ms

around the pulse detected on the PPG and the amplitude of this peak

was higher than 0.4 (maximum peak = 1). Artefacts were marked on

each channel separately, and 4 s epochs containing an artefact on any

of the channels were excluded from all spectral analyses. This conser-

vative combined method resulted in an average of 59% of clean data

in the control group and 53% of clean data in the patient group to be

used for further spectral analyses (see performance of individual and

combined filters in Figure S2).

Artefact-free, 50% overlapping, 4 s epochs were Hanning-tapered

and short-time fast Fourier transformed to extract spectral features.

To avoid redundancy and to increase statistical power by reducing the

number of variables, specific spectral features were calculated based

on the recommendations of B�odizs and colleagues (B�odizs

et al., 2021). For each night, spectral power was calculated between

1 and 30 Hz (sampling frequency of the device was 250 Hz). NREM

spectral power was averaged throughout the night and log–log trans-

formed to allow the fitting of a linear regression. Low-frequency spec-

tral power values were interpolated to ensure equidistant frequency

steps, and a linear fit was performed on each night in the 2–30 Hz

range. This linear yielded two meaningful variables: the spectral slope

and the spectral intercept. These two variables are strongly (anti-)cor-

related with each other and can be used to describe the balance or

ratio between the power components within the analysed data seg-

ment. In general, the steepness of the spectral slope represents the

balance between the low and high frequency power, while the inter-

cept represents the direction towards which this balance is distorted.

For example, during slow-wave sleep, a steep spectral slope with a

high intercept reflects much power in the lower frequency bands and

reduced power in the higher frequency bands, whereas a reduction in

the steepness of the spectral slope and a lower intercept would indi-

cate rather reduced slow activity and increased power in the higher

frequency bands in the analysed segment. However, during NREM

sleep, alpha and sigma (sleep spindle) frequencies could entail large

peaks, which may confound the fit of the linear regression. Therefore,

these frequency bands (6–18 Hz) were excluded from the fitting, as

recommended (B�odizs et al., 2021). Furthermore, from the frequency

range of 9–18 Hz, maximum spectral peak amplitude and frequency

were extracted to characterise spindle activity during the night. To

verify whether our data acquired with the EEG headband showed sim-

ilar quantitative spectral power profiles to those in the literature, we

attempted to replicate the results published by B�odizs and colleagues

(B�odizs et al., 2021). Similar to B�odizs et al., our sample showed an
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age-related significant decline in spectral peak amplitude on most

of the channels (�0.216 < r < �0.202, 0.04 < p < 0.06) and no age-

related difference in spindle spectral peak frequency

(�0.096 < r < �0.075, 0.388 < p < 0.503). However, in contrast to

the previous study, in our sample there was no significant flattening

of NREM spectral slope with age on any of the channels

(0.022 < r < 0.097, 0.381 < p < 0.845). Correlations between these

three variables and age on the two long-range channels (F7-O1 and

F8-O2) are presented in Figure S3.

2.3.3 | Overnight ascending gradient

Finally, the overnight ascending gradient of NREM slopes was cal-

culated per night. This variable was created to capture the

dynamic changes in the spectral characteristics of consecutive

NREM phases throughout the night. For example, a steep

overnight ascending gradient with a low intercept represents less

and less low frequency activity and more high frequency activity

with each subsequent NREM phase throughout the night, whereas

a shallow slope with a higher intercept represents that the power-

balance of low and high frequency is rather stable throughout

subsequent NREM phases during the night. To calculate the over-

night ascending gradient, the above described linear fitting process

was run on every individual 4 s epoch, resulting in as many slope

and intercept values as the (artefact-corrected) night had epochs.

Thereafter, a linear regression was fitted to the slopes and inter-

cepts of all NREM epochs (see Figure 2) to acquire information

about the gradient change and dynamicity of NREM spectral com-

ponents throughout the whole night. The overnight ascending gra-

dient was computed for each night and summarised per

participant with the median value over nights. Outliers ±3 times

the median absolute deviation were excluded from the analysis

for each channel separately.

F IGURE 2 Example of the
overnight ascending gradient over
one night of a participant. To
calculate the overnight ascending
gradient, the raw
electroencephalography (EEG)
recording was cut into 4 s windows
(a). For each of these windows, the
power spectrum was calculated,
log–log transformed and fitted with
a linear model to obtain the
intercept and slope (b, the green
arrow represents the intercept and
the dashed orange line the slope).
The intercept and slope values from
each 4 s window throughout the
whole night were concatenated; a
linear regression was computed on
the non-rapid eye movement
(NREM) related slope values only
resulting in the overnight ascending
gradient (c, the red dashed line
represents this linear regression of
the NREM slopes.) The slope and
intercept values of each 4 s
windows are displayed in the upper
and middle panel for comparison
with the hypnogram of the same
night represented in the lower
panel. Note that since rapid-eye
movement (REM) phases were not
properly cleaned, these were left
out of the linear regression and
incorporated for visualisation

purposes only (The grey columns
mark all REM phases). The overnight
dynamicity of slopes and intercepts
were smoothed by a 2000 s moving
mean for visualisation purposes.
Slopes and intercepts were highly
anti-correlated throughout all nights.

BLASKOVICH ET AL. 5 of 11
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2.4 | Photoplethysmography analysis

The PPG data were high-pass filtered at 0.2 Hz (eighth-order filter),

smoothed with a moving mean window of 0.2 s, and z-transformed to

standardise the variance. To find the peaks in the PPG data, we used

the findpeaks function in MATLAB with a peak width between 0.1

and 3 s, and optimised the peak location by finding maxima within a

window of 0.2 s around the original peaks. If no peak was detected

during 2 s with this method, we assumed there was a missing peak.

Then, the findpeaks function was re-run in that window on the second

derivative of the signal, after filtering the first derivative with a low-pass

filter at 1 Hz, to better detect change points at a temporal resolution

that was not too high. After this, the difference between consecutive

peaks is the RR interval, and the root mean square of these successive

differences (RMSSD) was computed for 20 s epochs. Last, but not least

to ensure optimal signal quality and stability throughout the whole

recording the PPG data were also artefact corrected. Since the PPG

channels on the Dreem 2 device are right next to the EEG channels it

was assumed that every epoch marked as an artefact on the EEG could

be a potential artefact on the PPG channel and this 20s epoch was

removed from the calculation of mean heart rate (HR) and heart rate

variability over nights. As done for the overnight ascending gradient,

the mean PR and RMSSD for each night and every stage were sum-

marised for each participant with the median values over all nights.

2.5 | Statistical analyses

Statistical analyses were performed with MATLAB (version

9.11.0.1769968 [R2021b]) and JASP (JASP Team, 2023). Normality of

the variables was assessed by a Shapiro–Wilk test, as well as

skewness and kurtosis of data distribution. Macrostructural differ-

ences between patients and controls were calculated by independent

samples t-tests or Mann–Whitney U-tests (if the assumption of nor-

mality was violated). To control for multiple comparisons, the

Benjamini–Hochberg procedure was used to estimate the false dis-

covery rate (FDR). Group dependent spectral slope differences were

examined by an analysis of covariance (ANCOVA) with age as a covar-

iate. Differences related to the mean heart rate and heart rate variabil-

ity (RMSSD) across wakefulness and sleep stages were examined by

repeated measures analysis of variance (rmANOVA) models. All the

above mentioned analyses were run on the summary values (median

over all nights) of each participant. Original (uncorrected) degrees of

freedom and corrected p-values (if applicable) are reported.

3 | RESULTS

3.1 | Sleep architecture

Table 2 summarises all sleep fragmentation related markers and test

statistics. Patients showed trends for an overall increase in the

amount of awakenings (unadjusted p = 0.053) and for a higher num-

ber of stage transitions (unadjusted p = 0.082) during nocturnal sleep

when compared with controls. There was a nominally significant

decrease in the overall sleep efficiency (unadjusted p = 0.043) in the

patient group when compared with the controls. All of the abovemen-

tioned differences were no longer significant after correction for mul-

tiple comparisons. No other sleep architecture related parameters

were significantly different across the groups or showed any interac-

tion with age as a covariate (e.g., F(1,79) = 0.26, p = 0.613 for the

group � age interaction for SWS duration).

TABLE 2 Sleep architecture related markers in patients and controls.

Patient (N = 47) CTL (N = 36)

Independent samples t-test/

Mann–Whitney U-test

Mean SD Mean SD t81 or U-value p-value

Sleep latency (min) 20.4 29.9 14.6 9.7 742.5 0.413

Sleep efficiency (%) 88.9 7.1 90.8 5.5 1033 0.318*

Awakenings (#) 22.8 8.3 20.1 6.6 �1.636 0.318*

WASO (min) 29.3 28.1 24.1 19.3 738 0.413

NREM stage 2 (min) 190.4 45.9 185.4 44.1 776.5 0.526

NREM stage 2 (%) 47.2 7.7 47.2 7.8 877 0.748

SWS (min) 90.7 25.9 87.1 22.9 �0.671 0.748

SWS (%) 23.1 6.9 22.7 5.5 �0.331 0.748

REM (min) 113.9 31.4 112.5 36.4 �0.181 0.734

REM (%) 28.5 6.3 29.3 8.7 885.5 0.748

Stage transitions (#) 76.7 21.8 70.4 18.2 �1.405 0.328

SWS stage transitions (#) 7.4 2.8 7.8 2.7 0.663 0.748

Note: p-values corresponding to one-sided t-tests and Mann–Whitney U-tests are corrected for multiple comparisons (Benjamini–Hochberg correction).

Abbreviations: SWS, slow-wave sleep; WASO, wake after sleep onset.

*Significant before at p < 0.05, but not significant after FDR correction.
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3.2 | Overnight ascending gradient

Group differences in the overnight dynamicity of NREM sleep were

investigated by an ANCOVA. Neither the group nor the effect of age

were significant on any of our analysed channels (Group: F7-O1–

F1,74 = 0.0136, p = 0.908; F8-O2–F1,68 = 0.90, p = 0.346; Age:

F7-O1–F1,74 = 2.31, p = 0.133; F8-O2–F1,68 = 0.03, p = 0.852).

Nonetheless, there was a significant group � age interaction for both

the F7-O1 (F1,74 = 6.71, p = 0.012) and F8-O2 (F1,68 = 4.13,

p = 0.046) channels (see Figure 3), showing the expected flattening of

overnight NREM slopes with age in the control group, and a fairly sta-

ble if not slightly increasing overnight ascending gradient with age in

the patient group.

3.3 | Heart rate and heart rate variability

First, a 2 � 3 rmANOVA was performed to examine differences in the

heart rate, where the group (control, patient) was the between-

subject factor and the phase (pre-sleep wakefulness, sleep, post-sleep

wakefulness) the within-subject factor. Here, we observed a signifi-

cant effect of phase (F2,72 = 3.67, p = 0.03), no effect of group

(F1,36 = 1.24, p = 0.27), and crucially, a significant group � phase

interaction (F1,72 = 3.12, p = 0.05) that was driven by robust differ-

ences in mean heart rate in pre-sleep wakefulness (higher for patients)

that became less pronounced in sleep and post-sleep wakefulness

(see Figure 4a). Pre-sleep wakefulness was defined as max. 5 min

wake period, lying in bed, right before falling asleep and post-sleep

wakefulness was defined as max. 5 min wake period lying in bed right

after waking up. Furthermore, this effect was not confounded by

activity, because although activity also has a significant effect of

phase (not of group) and group � phase interaction, this was in the

other direction with robust differences in post-sleep wakefulness (see

Figure S4). Zooming in on the sleep stages and wake after sleep onset

(WASO) with an explorative 2 � 4 rmANOVA did not reveal any sig-

nificant main effects or interaction, with marginally increased heart

rate values in patients throughout sleep stages and WASO

(see Figure 4b). For RMSSD, neither the main effects (F1,81 < 0.09,

p > 0.76, ηp
2 < 0.001) nor the interaction (F1,81 = 0.05, p = 0.82,

ηp
2 < 0.001) was significant.

4 | DISCUSSION

We evaluated the utility of a wearable headband EEG in a sample of

healthy participants and unmedicated patients with stress-related

mental disorders. To what extent could such headband (and wrist-

watch) wearables serve as measurement devices for sleep depth and

fragmentation, sleep disorders, and transdiagnostic factors related to

affective symptomatology such as cortical hyperarousal?

First, most of the participating patients seemed to manage well

wearing the headband EEG for at least two nights, most for around

two to nine nights. This might be because they had mild to moderate

symptom intensities, and inpatients with more severe symptomatol-

ogy may react differently. However, the headbands were better

accepted than we had anticipated at the start. Second, the data qual-

ity of the headband EEG surpassed our expectations by providing data

of sufficient quality on a majority of nights in a majority of patients,

not only for macrostructural analyses but also for more fine-grained

spectral analyses of multiple epochs (robust to a rigorous artefact cor-

rection procedure). Third, our macrostructural results are largely in line

with the scientific literature (Baglioni et al., 2016), that is, there were

no large effects and only a few small to moderate nominally significant

differences for macrostructural variables relating to sleep efficiency.

This appears trivial, but suggests that sleep researchers have not

missed any large effects in the past few decades due to potential con-

text effects of the sleep (Agnew et al., 1966; Toussaint et al., 1995)

laboratory; instead, focussing on the second night as is typical in

F IGURE 3 Age-related group differences in the non-
rapid eye movement (NREM) overnight ascending gradient
on channels F7-O1 and F8-O2. Light grey circles represent
the control group and dark grey squares the patient group.
Lines indicate the fit of the generalised linear models with
95% confidence intervals.
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psychiatric sleep research seems to be a valid methodological solution.

Severe first-night effects might still be relevant for more specific

populations such as individuals with insomnia (Cox et al., 2023;

Toussaint et al., 1995) and/or PTSD (Woodward et al., 2000), who for

instance report fewer nightmares in the sleep laboratory, potentially

representing an expression of reduced sleep-related anxiety in the

sleep laboratory.

Our spectral analyses revealed that the ratio of low versus high

frequency power, characterised by the beta of the linear fit of the log-

transformed 1/f power slope, did not differ between the groups.

(Floyd et al., 2000; Wang et al., 2020; Zhao et al., 2021). Instead, the

age-related decline in this ratio (B�odizs et al., 2021) associated with

reduced slow-wave power and sleep amount declined less in the

patient sample. Patients had an apparent reduced ratio (less low-

frequency, more high-frequency power) at a younger age than healthy

participants and less of a decline with age. However, these observa-

tions are cross-sectional in nature and warrant replication in longitudi-

nal data. For our spectral analyses, we decided to focus on analysing

data from the whole frequency range rather than specific bands as

this contains more information and provides a robust measure for the

balance between slow and fast frequencies. We restricted our ana-

lyses to NREM sleep because REM sleep artefact detection requires

more attention and clearer separation in the EEG traces of what is an

eye movement and what is not. This calls for the development of

more specific REM detection algorithms that are trained on frontal

EEG electrodes with simultaneous electrooculography and can then

be transferred to such data. For now, this restricts our spectral ana-

lyses to NREM, whereas REM sleep instability variables could be of

particular relevance to this population (Benz et al., 2020).

This also raises the question to what extent our patients experi-

enced insomnia, which is a common symptom of depression, with

around 20% of people with depression having an Insomnia Severity

Index score of 15 or above (Joshi et al., 2023). This is associated with

increased depression severity, anxiety symptoms, and reduced activity

levels (Joshi et al., 2023). However, we could not formally diagnose

our participants with insomnia on the basis of an interview on their

subjective reports. Naturally, we do have the actual data of sleep

latency and WASO, the objective insomnia measures, and analysed

those (e.g., there were 10 participants with a sleep latency of 30 min

or more in at least one night), but the literature suggests a great dis-

crepancy between objective and subjective insomnia variables that

prevents estimation of the prevalence of insomnia on the basis of

objective sleep variables (Rezaie et al., 2018). We believe, however,

that sleep wearables such as headbands and wristwatches that com-

bine actigraphy with heart rate will allow a more objective monitoring

of sleep latency and WASO and have the potential to bring insomnia

diagnostics back to sleep medicine. Moreover, we observed that three

healthy controls and five patients had a median of six or more SWS-

to-wake transitions per night, which could be a sign of more organic

sleep problems relating to sleep apnea or periodic limb movements.

This suggests that in a psychiatric patient sample, with depressed

inpatients having a surprisingly high prevalence of sleep apnea

(Behr et al., 2018), headbands in combination with breathing-related

wearables (Mendonça et al., 2018) might be used as an initial screen-

ing device for optimised decisions on who is referred to full polysom-

nography in the clinical sleep laboratory.

This then brings us to our heart rate and activity analyses, which

revealed a group � time interaction for mean heart rate. One explana-

tion would be an upregulation of sympathetic compared with para-

sympathetic activity before falling asleep, perhaps in apprehension of

the upcoming night (related to a fear of sleep (Werner et al., 2021) in

PTSD, but a milder variant in stressed participants), which reduces

during but remains present throughout sleep. An alternative explana-

tion is that because there appeared marginally increased differences

throughout the sleep stages, this might reflect a more general reduced

physical condition in the patients, which would be in line with the lit-

erature on reduced activity in people with stress-related mental disor-

ders, something that can be reliably detected with actigraphy (Tazawa

et al., 2019). However, this explanation cannot account for a decline

in the differences at post-sleep, which seems to point more in the

F IGURE 4 Mean heart rate (HR) differences
between controls and patients. (a) Mean heart rate
during pre-sleep wakefulness (up to 5 min), sleep,
and post-sleep wakefulness (up to 5 min). (b) Mean
heart rate during different sleep stages during the
night. Light grey dots represent control
participants, dark grey squares represent patients,
and whiskers represent the standard error of the
mean. Heart rates are in beats per minutes (bpm).

NREM2, non rapid-eye movement stage 2; REM,
rapid-eye movement; SWS, slow-wave sleep;
WASO, wake after sleep onset.

8 of 11 BLASKOVICH ET AL.

 13652869, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jsr.14123 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [29/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



direction of a homeostatic process. This explanation is also supported

by a recent study by Beck et al. (2022), in which healthy participants’
stress levels were experimentally manipulated before an afternoon

nap, revealing that participants with higher stress levels had a signifi-

cantly higher heart rate during the beginning of the sleep period. As in

our study, this difference disappeared by the end of the nap. The

heart rate variability measures did not reveal any effects of interest,

but our metric, the most commonly used – the RMSSD – is highly sus-

ceptible to noise in the data. Peaks in the PPG have a lower kurtosis

than peaks in the electrocardiograph (ECG), easily adding some addi-

tional milliseconds of variation to the peak-to-peak differences, and

flattened peaks also occur and could lead to a missing peak of addi-

tional variation in the peak timing. This is also why heart rate variabil-

ity from PPG is a different metric than heart rate variability from the

ECG (Mejia-Mejia et al., 2020), and there is still a debate about what

is the most artefact-resistant way to analyse heart rate variability in

sleep. RMSSD is probably not going to win it.

Further limitations include the restriction of spectral analyses to

NREM sleep until REM algorithms have been properly trained and

openly shared, the cross-sectional nature of the data in the light of

the group � age interactions and the lack of formal insomnia diagno-

ses based on subjective data. We could confirm the mental disorders

of patients, and the absence of disorders in healthy participants in our

sample, but the sample itself was too small, and the overlap among

mental disorders too high, to analyse the data for subgroups

(e.g., major depressive disorder (MDD) without an anxiety disorder,

MDD with an anxiety disorder, anxiety disorder without MDD). This

heterogeneity of the patient group, our rather conservative auto-

mated artefact correction method that we chose due to the reduced

data quality of the dry electrodes, the self-administration of the EEG-

headbands or the wide age-range (18–65) of our participants could all

have reduced the smaller than anticipated effects and explain why the

hypothesised group differences were not found. Finally, as we do not

have 1–2 nights with polysomnography in the sleep laboratory, we

cannot compare the performance of the EEG headbands with the gold

standard of PSG recordings. Although the accuracy of the headband

EEG compared with our raters was high, wakefulness seemed to be

overestimated and NREM stage 1 was underestimated by the Dreem

2's algorithm. Given that sleep continuity related variables showed

nominally significant group differences in our work, such a systematic

bias could be a confound. However, we do not claim any epidemiolog-

ical ground truth in the amount of hours slept or WASO minutes, but

instead focussed on group differences that should have the same sys-

tematic bias given the similarity in sleep patterns. However, whether

the systematic bias is actually the same for both groups is still an

assumption, and further research should address the question of to

what extent differences in activity might affect the detection of wake-

fulness in both headband-based and wrist-based wearables.

5 | CONCLUSION

All in all, the headbands were accepted well by people with

stress-related mental disorders, and the data quality was sufficient

for macro- and microstructural analyses of a majority of nights in

a majority of participants. As in previous research, we did not

observe large macrostructural between-group effects except for

those related to fragmented sleep. More temporally fine-grained

analyses failed to confirm hypothesised group differences in corti-

cal hyperarousal and only revealed differences in age-related

changes in the low versus high frequency power ratio, in nightly

activity and mean heart rate. Our results imply that wearable

devices that record EEG and/or PPG can be used over multiple

nights to assess sleep depth and fragmentation, low versus high

frequency spectral ratio, and sympathetic drive throughout the

sleep–wake cycle in a sample of people with stress-related mental

disorders and healthy controls, although macro-structural and

spectral markers did not differentiate the two groups.
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